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Biological time series often display complex oscillations with several interacting rhythmic components.
Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce
oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we
propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by
the presence of a slower mode. Our method is applied both to experimental data from normotensive and
hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologi-
cally based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two
mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the
myogenic oscillations.
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I. INTRODUCTION

Living systems often generate signals that reflect the co-
existence of rhythmic components originating in different
mechanisms. Besides the heart beat, analyses of blood pres-
sure data, for instance, are likely to reveal components pro-
duced by both the respiratory cycle and the vasomotoric ac-
tivity of small arteries and arterioles[1,2]. The presence of
such multimode dynamics is well-documented for physi-
ological control systems at the cellular or subcellular level
(e.g., the bursting activity of pancreaticb cells [3] and of
certain nerve cells[4,5]) and the systemic level(e.g., the
coexistence of a 24 h circadian rhythm and a 2–4 h ultradian
rhythm in insulin secretion[6]).

Interaction between coexisting modes can lead to a vari-
ety of interesting nonlinear dynamic phenomena, with en-
trainment or synchronization representing the most promi-
nent example. Experimental and/or numerical investigations
of synchronization have been performed for many different
physiological systems, including, for instance, the cardiores-
piratory system[7] and small ensembles of nerve cells[8].
However, even when synchronization does not occur, the
mode-to-mode interaction may reveal itself in the form of
modulation. The instantaneous amplitude or frequency of
one mode may be modulated by the presence of the other[9].

Experimentally it may be possible to record only a single
variable(such as the blood pressure or the concentration of a
certain hormone), and the question here arises: to what ex-
tent will it be possible to demonstrate and characterize the
modulation of a fast mode from a time series that is domi-
nated by a slower mode? It is the purpose of the present
paper to illustrate how one can address this question by
means of double-wavelet analysis. The method will be ap-
plied to analyze tubular pressure and blood flow data from
rat nephrons in order to understand the interaction between
the slower tubuloglomerular feedback and the faster myo-
genic mechanism in renal autoregulation.

At the level of the individual functional unit(the neph-
ron), renal pressure and flow control involves two different

mechanisms: the tubuloglomerular feedback(TGF), which
regulates the incoming blood flow in response to variations
of the NaCl concentration of the tubular fluid near the termi-
nal point of the loop of Henle, and a myogenic mechanism
by which the afferent arteriole regulates its diameter in re-
sponse to variations in its transmural pressure. Both of these
mechanisms can produce rhythmic variations, and interaction
between the two signals can lead to various modes of intra-
nephron synchronization[10–12].

Investigation of nephron dynamics is most readily per-
formed by measuring the hydrostatic pressure in proximal
tubules of superficial nephrons(i.e., nephrons close to the
surface of the kidney). This signal is dominated by the rela-
tively slow TGF oscillations. We shall show, however, how
tubular pressure variations can be used to obtain information
about the modulation of the frequency and amplitude of the
faster myogenic oscillations and, hence, about how the
slower mode influences the faster one.

Physiological processes are often highly nonstationary.
Part of this nonstationarity may be ascribed to changing en-
vironmental conditions or to interactions with other regula-
tory processes. It is known, however, that the degree of non-
stationarity can differ between states of health and disease
[13]. Because of their nonstationarity, analyses of physi-
ological time series often apply the concept of slowly vary-
ing parameters; it is assumed that the statistical characteris-
tics of the data remain practically constant during certain
time intervals, and the analysis is performed by using a slid-
ing window. This approach is useful if the nonstationarity is
associated with low-frequency spectral components relative
to the physiological rhythms of interest. If the properties of
the experimental data display essential variations over short
time intervals, one has to apply specialized tools such as
wavelet analysis[14,15], detrended fluctuation analysis[16],
or other techniques[17].

A first step in our analysis is to separate the slow and the
fast oscillatory modes. A way to approach this is to apply
band pass filtering, although in nonlinear systems this proce-

PHYSICAL REVIEW E 70, 031915(2004)

1539-3755/2004/70(3)/031915(8)/$22.50 ©2004 The American Physical Society70 031915-1



dure may fail to correctly separate the different modes in the
presence of harmonics and interaction frequencies in the
spectrum. Nonstationarity can also create problems in a nu-
merical study of modulation because the modulation proper-
ties can change in response to changes of the system param-
eters. In particular, if the instantaneous frequency of a mode
changes in time, the choice of filter parameters becomes a
matter of serious concern. On the one hand, one cannot apply
a narrow frequency range for filtering because the rhythms
float. On the other hand, if the two modes are close enough
in the frequency domain, one cannot use a broad frequency
range in the band pass filter since in that case the rhythms
may not be separated. Such problems can sometimes be
solved by using a sliding-window analysis[18] or, as we
shall demonstrate later, different aspects of multimode dy-
namics can be studied with wavelets.

II. DOUBLE-WAVELET TECHNIQUE

Spectral analyses of biological time series are often based
on the application of a wavelet transformation[14,15]. The
advantages of this approach in comparison with the classical
Fourier transform have been widely discussed. The wavelet
transform of a signalxstd is obtained as follows:

Txsa,td =
1
Îa
E

−`

`

xsudc * Su − t

a
Ddu. s1d

Here c is a “mother” function that should be soliton-like
with zero average.Txsa,td are the wavelet coefficients anda
is a time scale parameter. The details of this transform(e.g.,
the choice ofc) depend on the problem to be solved. In the
analysis of rhythmic components, theMorlet function is typi-
cally considered. Instead of the Morlet wavelet, some au-
thors[19] prefer to use other complex wavelet functions be-
cause of possible spurious effects, especially for time series
with nonzero mean. To avoid such effects we have trans-
formed all analyzed time series to zero mean value before
applying the wavelet technique. By performing an analysis
of nephron dynamics, we have checked and found that there
is practically no difference between the results obtained with
the Morlet wavelet and with the function used in[19]. A
simplified expression of the Morlet function has the form

cstd = p−1/4 exps j2pf0tdexpF−
t2

2
G . s2d

The valuef0 allows us to search for a compromise between
the localizations of the wavelet in the time and frequency
domains. In our workf0=1. The relation between the scalea
and the central frequency for the mother functionf in this
situation isf =1/a.

Besides the coefficientsTxsa,td, the energy density of the
signalxstd in the time scale plane can be estimated:Exsa,td
,uTxsa,tdu2. Following the definition used in Ref.[15], the
coefficient of proportionality betweenExsa,td and uTxsa,tdu2
depends on both the scale and the shape of the mother wave-
let although in some works the simpler expressionfExsa,td
= uTxsa,tdu2g is considered. Note that the modulus of the

original wavelet coefficientsTxsa,td estimated from Eq.(1)
do not correspond to actual amplitudes of rhythmic compo-
nents. To study amplitude variations, it is possible to slightly
change the definition of the wavelet transform[17] or to
make corrections for the energy densityExsa,td. In our work
we considerExsa,td=Ca−1uTxsa,tdu2, whereC is a parameter
that depends on the wavelet mother function.

Exsa,td represents a surface in three-dimensional space
whose sections at fixed time moments correspond to the local
energy spectrum. To simplify the visualization of this sur-
face, the dynamics of only the local maxima ofExsa,td or
Exsf ,td, i.e., the time evolution of the spectral peaks will be
considered. Figure 1(b) demonstrates all maxima ofExsf ,td
detected in the original signal[Fig. 1(a)] at each time mo-
mentt (i.e., we consider different components irrespective of
their contributions). However, this type of figure does not
give information about the dominant spectral components.
Such information can be obtained, for example, from a
scalogram, i.e., a time averaged power spectrum, which is an
analogue to the Fourier power spectrum. Such a scalogram is
illustrated in Fig. 1(c) where a well-pronounced peak around
0.033 Hz, corresponding to the slow mode, is distinguish-
able. The other peak at 0.15–0.17 Hz derives from the fast
myogenic dynamics. Since both frequency components are
of physiological interest we extract them from the original
wavelet transformation for further analysis of their proper-
ties. Figure 1(d) displays the temporal behavior of the local
spectral peaks associated with the slowsfslowd and the fast
sf fastd oscillatory modes in the dynamics of the nephron[Fig.
1(a)]. For the considered example, both modes are well-
expressed in the two-dimensional representation ofExsf ,td.
In many cases, as discussed in Sec. III, the fast mode dis-
plays strong nonstationarity.

It can be seen thatfslow remains practically constant while
f fast changes in time. Moreover, since Fig. 1(d) only repre-
sents the visualization of the surfaceExsf ,td, a value of the
energy density is associated with each point shown in this
figure. This means that we can extract the time dependences
of the instantaneous frequenciesfslowstd and f faststd from
Exsf ,td as well as the dependences of the instantaneous val-
ues of the energy densitieseslowstd andefaststd. Or, consider-
ing the energy as a quantity that varies proportional to the
square of the amplitude, it is possible to characterize the
dynamics in terms of the instantaneous amplitudes.

Aiming to study modulation properties of the fast mode,
we propose to use the following approach. The time depen-
dence of the instantaneous frequencyf faststd is considered as
input signal for the next wavelet transform(1). Again, the
wavelet coefficients and the energy density are estimated and
the simplified visualization of the energy density is consid-
ered. The latter will contain information about all modes
involved in the modulation process. In the case of nonsta-
tionary dynamics we can examine how the features(charac-
teristics) of the frequency modulation are changed in time.
By analogy, instead of the instantaneous frequency of the fast
dynamics we can take the instantaneous amplitude of this
oscillatory mode and, therefore, it is possible to study the
properties of amplitude modulation of the fast rhythm as
well.
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This approach, which we shall refer to as adouble-
wavelet analysis, allows us to characterize the nonstationary
temporal dynamics of a modulated signal, i.e., to detect all
components that are involved in the modulation, estimate
their contributions, and analyze whether the modulation
properties change during the observation time. Figure 2 dem-
onstrates the results of such an analysis for the time series
shown in Fig. 1(a). We can see that the modulation frequency
(white circles) is close to the slow rhythm(black circles) for
both the frequency and amplitude modulations[Figs. 2(a)
and 2(b), respectively]. The slow mode may not be the only
component detected in the modulation process. In particular,
the spectrum of modulation can contain harmonics offslow
and/or a low-dimensional structure similar to 1/f dynamics.

III. INTERACTING FAST AND SLOW MODES

A. Mathematical model of a single nephron

As mentioned in the introduction, the individual func-
tional unit of the kidney(the nephron) displays bimodal os-
cillations in its regulatory function. The nephron may be con-
sidered as a filtration device with an internal feedback(the
so-called tubuloglomerular feedback) that regulates the in-
coming blood flow depending on the NaCl concentration of
the fluid that leaves the loop of Henle[20–22]. Experiments
by Leyssac and Holstein-Rathlou[20,21] have demonstrated
that this feedback regulation can become unstable and gen-
erate self-sustained oscillations in the proximal intratubular
pressure with a typical period of 30–40 s(slow mode).
These oscillations are typically regular for normal rats and
irregular for rats with a genetic form of high blood pressure,
so-called spontaneously hypertensive rats[20]. The second
(fast) mode is connected with a myogenic mechanism asso-
ciated with an intrinsic response of the smooth muscle cells

FIG. 1. Experimental recording of
the proximal tubular pressure in a single
nephron of a rat kidney(a) and results of
its wavelet analysis: the dynamics of all
local maxima of the energy density(b),
the scalogram(c) and the extracted fre-
quencies of rhythmic components(d).
The search forfslow and f fast was per-
formed in the ranges 0.02–0.07 and
0.1–0.25 Hz, respectively. The fre-
quency step in the wavelet transform was
chosen to be 0.001 Hz.

FIG. 2. Results of the double-wavelet analysis of the time series
shown in Fig. 1(a). (a) and(b) correspond to the cases of frequency
and amplitude modulation, respectively. Black circles markfslowstd
and white circles indicate the instantaneous modulation frequency.
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in the vascular wall of the afferent arteriole. When excited by
the slow oscillations, this mechanism produces oscillations
with a period of about 5–10 s.

The main structure of the nephron model is discussed, for
instance, in Refs.[9,23,24]. The autoregulation of the blood
flow to the individual nephron may be described by the six
ordinary differential equations

Ṗt =
1

Ctub
fFfsPt,Pa,rd − Freab− sPt − Pdd/RHg,

ṙ = vr ,

v̇r =
1

v
fPavsPt,Pa,rd − Peqsr,CsX3,ad,Td − vdvrg,

Ẋ1 =
1

RH
sPt − Pdd −

3

T
X1,

Ẋ2 =
3

T
sX1 − X2d,

Ẋ3 =
3

T
sX2 − X3d. s3d

The first equation determines the pressure variations in the
proximal tubule in terms of the in- and outgoing fluid flows.
Here,Ff is the single-nephron glomerular filtration rate and
Ctub is the elastic compliance of the tubule. The flow into the
loop of Henle is given by the difference between the proxi-
mal and the distal tubular pressures and by the flow resis-
tanceRH. The reabsorption in the proximal tubuleFreab is
assumed to be constant. The arterial blood pressurePa is
used as a control parameter in our simulations.

The next two equations describe the dynamics associated
with the flow control in the afferent arteriole. Here,r repre-
sents the radius of the active part of the vessel andvr is its
rate of increase.d is a characteristic time constant describing
the damping of the oscillations,v is a measure of the mass
density of the arteriolar wall, andPav denotes the average
pressure in the active part of the arteriole.Peq is the value of
this pressure for which the arteriole is in equilibrium with its
present radius and muscular activationC. The expressions
for Ff, Pav, andPeq involve a number of algebraic equations
that must be solved along with the integration of Eqs.(3).

The remaining equations in the single-nephron model rep-
resent the delayT in the TGF regulation. This delay arises
both from the transit time through the loop of Henle and
from the cascaded enzymatic processes between the macula
densa cells and the smooth muscle cells that control the con-
tractions of the afferent arteriole. For a more detailed expla-
nation of the model and its parameters, see, e.g., Ref.[23].

The model(3) represents a relatively accurate account of
the basic physiological mechanisms responsible for the regu-
lar oscillations in normotensive rats as well as for the chaotic
dynamics observed in spontaneously hypertensive rats. Over
the years it has been tested and examined in many different
ways.

With this model we can demonstrate the possibility of
extracting information about the modulation properties of the
fast oscillatory mode from the slow phase variablePt. For
this purpose we consider two different dynamical regimes,
namely periodic oscillations fora=26 and chaotic oscilla-
tions for a=28 [Figs. 3(a) and 3(c)]. To show the efficiency
of the proposed approach in the case of nonstationary dy-
namics we have performed a stepwise change of a selected
control parameter: The parameterPa characterizing the arte-
rial pressure is changed fromPa=13 kPa toPa=13.3 kPa at
t=300 s for the signal shown in Fig. 3(a), and the parameter
a is changed froma=28 toa=31 at the same time moment
for the process considered in Fig. 3(c).

FIG. 3. Numerical analysis of the
mathematical model(3). Responses to a
parameter change of the tubular pressure
and modulation properties in the periodic
(a,b) and chaotic(c,d) regimes, respec-
tively. Solid curves in(b,d) correspond
to the instantaneous frequency of the
slow mode. The instantaneous modula-
tion frequencies are presented by dashed
curves (the case of amplitude modula-
tion) and by dotted curves(the case of
frequency modulation). The parameters
for the wavelet analysis are the same as
in Fig. 1.
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Various tests performed with the nephron model and with
different simpler examples of modulation(such as a multi-
plicative interaction modeled by two harmonic functions)
have shown that the presence of a slow nonstationarity, such
as a variation of the arterial blood pressure with its
1/ f-spectral properties, does not have an essential influence
on our ability to estimate the modulation frequency.

The results of our numerical investigations are presented
in Figs. 3(b) and 3(d). Here, the solid curves correspond to
the instantaneous frequencies of the slow oscillatory mode
(detected by analogy with Fig. 1). The instantaneous fre-
quencies of the amplitude modulation(dashed) and of the
frequency modulation(dotted) are obtained with the double-
wavelet analysis introduced in the previous section. Note,
that the modulation frequencies demonstrate a stronger float-
ing around the slow rhythm in the chaotic regime. These
fluctuations can probably be reduced by taking longer data
with a better resolution. We decided, however, to restrict our
findings to time series of the same length as available in our
typical experimental recordings(4096 points).

B. Experimental results

Despite the emergence of a consensus on the combined
participation of both the myogenic and the TGF mechanisms
in autoregulation, there are only a few attempts to examine
the interplay between them.

Let us consider recordings of tubular pressure from a
single nephron in order to compare experimental and simu-
lation results. Normotensive rats exhibit regular oscillations
in their tubular pressure. From Fig. 2(presented in Sec. II
together with the method description) it can be seen that the
modulation frequency of the fast myogenic oscillations
(white circles) is in the same frequency band as the fre-
quency of the TGF-mediated oscillations(black circles).

The tubular pressure data from a hypertensive rat(Fig. 4)
are strongly nonstationary. All frequencies identified in the
process show essential temporal variations[Figs. 4(b), 4(c)
and 4(d)]. Despite this nonstationarity the proposed double-
wavelet approach allows us to obtain a qualitative similarity
between the dependences of the instantaneous modulation
frequencies and the slow rhythm. Note, that “switchings” of
the modulation frequencies take place earlier than the corre-
sponding changes of the TGF dynamics. This may be a result
of the averaging effect: To estimate the characteristics at a
fixed time moment we use a “sliding window” with the
width of the wavelet mother function at the chosen fre-
quency, i.e., we consider both some previous and some fu-
ture dynamics.

Based on these results it is possible to conclude that(i)
the proposed approach allows us to estimate the properties of
modulation of the fast oscillatory mode extracted from the
original miltimode data; and(ii ) in accordance with the
model, both amplitude and frequency modulation are pre-
sented in the experimental data.

The analyses of experimental data presented to this point
were made from tubular pressure recordings. Such measure-
ments are rather easy to perform and have relatively low
measurement noise. They suffer from the disadvantage that
the myogenic oscillations originate in the arterioles and that
the fast oscillations in tubular pressure are damped by the
compliant nature of the tubule wall, which(together with the
associated flow resistances) serves as a mechanical low pass
filter. An experimental laser Doppler method for measuring
blood flow in a single efferent arterioles on the surface of the
kidney[25,26] allows one to observe more pronounced myo-
genic oscillations compared to those revealed by the tubular
pressure recordings, but at the same time contain more mea-
surement noise. At the level of whole kidney blood flow, a
Volterra-Wiener kernel analysis has previously revealed non-
linear interactions between the two mechanisms in kidneys

FIG. 4. Analysis of the tubular pres-
sure data for a hypertensive rat.(a) is the
original time series.(b) demonstrates the
instantaneous frequency of the fast mode
f faststd. (c) and (d) show the instanta-
neous frequency of the slow mode(black
circles) and the modulation frequency
(white circles) for the frequency and am-
plitude modulation of the fast mode,
respectively.
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subjected to broad band forcing of the arterial blood pressure
[27].

Figures 5 and 6 demonstrate the results obtained for a
normotensive and a hypertensive rat, respectively. In both
figures black circles denote the temporal dependences of the
instantaneous frequencies of the slow oscillatory mode, and
white circles are related to the instantaneous modulation fre-
quencies. For a normotensive rat(Fig. 5) the modulation
frequency displays some fluctuations around the frequency
of the slow oscillatory mode. The variations from the TGF
frequency do not exceed 0.01 Hz, which is about the limit of
detection of the method.

A similar situation exists for the hypertensive rat(Fig. 6),
although the analyzed data are rather nonstationary. Some
delay between the instantaneous frequencies[Fig. 6(b)] may
arise from the earlier mentioned averaging effect. The modu-
lation frequencies in Figs. 6(c) and 6(d) are close to the slow
rhythm, although the rapid changes of the TGF mode
(aroundt<400 sec) are not reproduced.

IV. DISCUSSION

The kidney regulates the incoming blood flow at the level
of each nephron through a combination of nonlinear mecha-

FIG. 5. Analysis of blood flow data
from the nephron of a normotensive rat.
(a) is the original time series.(b) illus-
trates the instantaneous frequencyf faststd.
(c) and (d) show fslowstd (black circles)
and the modulation frequency(white
circles) for the frequency and amplitude
modulation of the fast mode,
respectively.

FIG. 6. Analysis of blood flow data
from a nephron of a hypertensive rat(a)
exhibiting chaotic dynamics. The instan-
taneous frequencyf faststd is shown in(b).
(c) frequency modulation and(d) ampli-
tude modulation. The extracted modula-
tion frequencies(white circles) corre-
spond to the frequencies of the slow
mode(black circles).
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nisms that generate oscillatory modes of different frequen-
cies. Similar multimode phenomena arise in many other
physiological systems and there is a considerable interest in
studying the interation between the underlying mechanisms.
With the aim of characterizing the modulation properties of
the myogenic mode in neprhon autoregulation, we developed
a double-wavelet approach that allows us to detect all spec-
tral components involved in the modulation, estimate their
contribution, and describe how the modulation properties are
changed in response to changes of the system parameters.
Using experimental time series for the tubular pressure and
arteriolar blood flow, we have shown that these data suffice
to estimate the instantaneous modulation frequencies of the
fast oscillatory mode.

Comparison of the results of the mathematical model for
the single nephron and experimental data allows us to con-
clude that the frequency and amplitude modulations occur
similarly in both cases, i.e., the model reflects the main ef-
fects taking place in the real dynamics. We also conclude that
the modulation process contains a rhythmic component with
the same frequency as the TGF dynamics.

Amplitude modulation of the fast mode by the slow mode
has previously been shown[27], but frequency modulation is
heretofore unknown in the renal circulation, or in other vas-
cular beds. Frequency modulation represents a form of fre-
quency encoding and provides more robust signaling in a
noisy enviroment than can be achieved by amplitude modu-
lation alone. The 1/f fluctuations in arterial pressure have
the potential of causing large fluctuations in renal blood flow
and therefore in flow rate of tubular fluid. The combined
action of TGF and the myogenic mechanism serve to con-
strain the resultant fluctuations in renal blood flow, but it is
important that the two mechanisms act cooperatively to limit
fluctuations of the mass flow of NaCl to the distal nephron

whose epithelial transport functions operate under hormonal
control.

Extraction of the instantaneous frequencies from the sur-
face Exsf ,td can sometimes lead to problems in determina-
tion of the points of the instantaneous frequency. In particu-
lar, this may be a case when a fast mode is comparable in
power to the harmonics of the slow mode and they are close
in the frequency domain. In such situations, we may lose
some part of the modulation period while extractingf faststd
for the remaining part. Analysis off faststd will therefore allow
estimation of the modulation frequency(losing some points
can influence only the harmonics which is not important for
the aims of our study). However, in the last case it will be
difficult to define the modulation depth. Of course, such
problems do not always arise, we would like only to note
that they may occur. Actually, to make correct conclusions
about the modulation depth in the nephron dynamics we
need at least two conditions to be satisfied:(i) the harmonics
of the slow mode(third harmonic and higher) should be
small in power in comparison with the fast mode(this is
probably the case for real nephron dynamics where these
harmonics are usually less expressed than in the model); and
(ii ) the data should be reasonably stationary. This means that
it should be possible from the experiments to obtain time
series such that the modulation depth can be estimated(es-
pecially in the case of regular dynamics).
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